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Linear Systems and Normality 
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This paper is concerned with responses of linear systems to non-Gaussian 
random excitation and with the measurement of the departure of the responses 
from Gaussian behavior. First, we show the classical Rosenblatt result and its 
nonapplicability to the most popular practical systems described by differential 
equations of first and second order. Then, using a simple measure of departure 
from normality (the asymmetry and excess coefficients) and performing numeri- 
cal calculations, we give quantitative information about the effect of system 
parameters and the radius of correlation of the excitation process on the 
distance from normality. 
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1. INTRODUCTION 

One of the most common assumptions in the theoretical analysis of random 
phenomena is the normality of the processes under consideration. For 
instance, the stochastic analysis of linear systems is greatly simplified if it 
can be assumed that the random processes treated are Gaussian. In the 
engineering theory of random signals it is usually believed that if a 
stationary stochastic process is the input to a linear system, then the 
response is "approximately normally distributed" as the bandwidth of the 
system tends to zero. Obviously, such a statement cannot be true in general 
and in the cases when it can be justified we need not only the asymptotic 
result but also an estimation of the departure of the response from normal- 
ity in any practical situation. 

Therefore, it is of great importance to establish some criteria for the 
Gaussian assumption in the stochastic analysis of linear systems. Even 
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when general answers are impossible it seems to be very useful to analyze 
the problem of normality and nonnormality, taking particular problems of 
practical interest. 

Let the input to a linear system be denoted by X(t). We shall assume 
that X(t) is a given stationary, non-Gaussian, stochastic process. The 
resulting response is represented as 

Y(t) = fore(t, .c)X(r) dr (1.1) 

where p(t,'r) is a unit response function. The integral (1.1) can be repre- 
sented as a finite sum of random variables 

Y ( t ) ~ i ,  ~i=( ja p(t,r)x(~)& (1.2) 
i =  1 J(J-- 1) A 

where A denotes the length of an elementary interval in the division of the 
interval [0, t] into n parts. If the variables ~'i were independent then--by 
virture of the classical central limit theorem--the distribution of Y(t) could 
be considered approximately Gaussian as n ~ oo. But the variables fi are 
dependent, being functions of the same stochastic process. The central limit 
theorem has been extended to the case when random variables are depen- 
dent (cf. Refs. l, 2). This more general form of the central limit theorem 
imposes, however, new conditions on the random variables under consider- 
ation. It was shown (cf. Refs. 2, 3) that the process X(t) in (1.1) must satisfy 
a strong mixing condition. In addition to this requirement, the system 
characteristic p( t ,z)--as  was shown in Rosenblatt's classical paperC4)--has 
to satisfy appropriate analytical conditions. 

The papers mentioned above constitute a valuable contribution to the 
understanding of the mathematical mechanism of the occurrence of 
Gaussian responses in linear systems, but they provide only qualitative and 
asymptotic results. In specific situations one is faced with the problem of 
testing the mixing condition and other assumptions. Furthermore, the 
problem of appropriate bounds for the departure of the response Y(t) from 
normality remains. From the point of view of applications it is of impor- 
tance to establish some quantitative results. A significant step in this 
direction has been made in Refs. 5-7. 

In Refs. 5 and 6 the authors consider the shot noise process, that is, a 
stochastic process Y(t) defined by 

Y(t) = ~ p(t, ti) (1.3) 
i 

where ti are the random times of a Poisson process with average intensity 
g(t). The process (1.3) can be considered as the output of a linear system 
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with unit response function p(t,.r) subjected to a sequence of impulses at 
the times t i. 

With Ft(y ) the distribution function of Y(t) and d~t(y ) that of a 
Gaussian process with the same mean and variance as Y(t), it has been 
shown in Ref. 6 that for any t 

4127r12(t)] '/z 
IFt(y) - ~bt(y)[ < ~ 13(0 (1.4) 

where 

t) = fff ( )lp(t, (1.5) I.( 

If, additionally, x ( t )=  ~c = const and p( t , r )=p( t -  "f) and the function 
p(O) is band-limited by ~%, then 

IF,(y) - O,(y)[ < 2(,~c/x) ~/2 (1.6) 

Hence,.if ~oc/x ~ O, then Ft(y ) tends to a normal distribution. 
Reference 7 constitutes an extension of Ref. 6 to a wider class of 

excitation of linear systems. The author investigates the normality of the 
response Y(t) of a narrow-band system when the input X(t) is a stationary 
process with finite time of dependence [if a is a finite number, then the 
random variables X(t) and X(t + u) are independent for u > a]. Using the 
classical Berry-Essen inequality, the author establishes an upper bound for 
the departure of the response from normality. This bound is expressed in 
terms of the bandwidth of the system and spectral density and the third 
absolute moment of the excitation. It should be noted that a systematic and 
uniform approach to measuring the distance from normality with applica- 
tions to discrete linear filters is presented in Ref. 8. 

Though the results described above provide an essential contribution 
to the Gaussian analysis of linear systems, the situation is still far from 
being clear--especially when one is concerned with real physical systems. 
The purpose of the present paper is to give further (and more concrete) 
information concerning responses of linear systems to non-Gaussian excita- 
tion. First, we show the classical Rosenblatt result and its nonapplicability 
to the most popular practical systems described by differential equations of 
first and second order. Then, using a simple measure of departure from 
normality (the asymmetry and excess coefficients) and performing numeri- 
cal calculations, we provide the answer to the question: what are the values 
of system parameters and the radius of correlation of the excitation process 
for which the departure from normality of the response is less or greater 
than a given quantity? The paper is based on unpublished notes (9) and a 
thesis.(~o) 
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. ROSENBLATT'S THEOREM AND REAL SYSTEMS 

Let us consider a linear system (filter) defined by relation (1.1). Let 

(2.l) 
t 2 e(t) =fop 

In Ref. 4 Rosenblatt introduces the following assumptions. 
Assumptions A : 
1. P(t)--->oo as t---~ oo. 
2. The function pt(~- ) = p(t, ~) increases slowly, so that (a) 

fA. Ip,( )12d = o(e( t ) )  as t--->oo 

for every sequence of subsets A (t) C (0, t) whose Lebesgue measure m(A (t)) 
is such that m(A( t ) )=  o(t) uniformly with respect to (1 / t )m(A(t ) )  as 
t ~ o o ;  and, ( b ) p ( t , ~ ) =  O([P(t)] 1/2) uniformly in t as t ~  oo. 

3. We have the following: 

t~oolim ~ 1  f0  t - Ihlp(t,'r + Ihl)p(t,'r)d'r = o(h) 

which exists for every h and is continuous in h. 
The limit function p(h) is a nonnegative-definite function and by virtue 

of the Bochner theorem it has a representation 

p(h) = f ihX dM(X) 

where MO t) is a nondecreasing, bounded function. 
Assumptions B: 
1. The process X(t)  satisfies the strong mixing condition, which can be 

formulated as follows (cf. Ref. 2): let ~ t  be a Borel field of events 
generated by random variables X(u), u < t, and ~ be a Borel field of 
events generated by random variables X(u), u >I z; there exists a nonnega- 
tive function cp(s) defined on [0, co) and qg(s)~0 as s-~ oo such that for 
any pair of events B E 63 t and F E 6y~ 

162(B n F )  - 6J(B )~ < W(-r - t) 

where P ( B )  denotes a probability of event B. 
2. Let E [X(t)] -- 0. The moments 

E[X( t , )X ( t z )  ] = K(t  2 - tl) 

E[ X(  q ) X (  t2)X( t3)X( t4) ] = R(  t 2 - tl,t  3 - tl,t  4 - tl) 

are absolutely integrable over one- and three-dimensional space, respec- 
tively, and the spectral density g(?~) of the process X(t)  is positive every- 
where. 
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Rosenblatt has shown that under the above assumptions 

1 t s p(t,r)X(r)dr (2.2) [P(t)]  I/2 

is asymptotically normally distributed with mean zero and variance equal 
to 

2~r f___+ 2 g()~)dM()~) 

The conditions of the theorem are not easy to verify directly. In 
particular, the problem of testing the strong mixing condition in real 
physical situations is rather involved (cf. Ref. l 1). Only for Gaussian 
stationary processes can this condition be replaced by a simpler one, 02) but 
we are interested here in the non-Gaussian case. 

Let us consider dynamical systems described by the differential equa- 
tions 

dY (I) --~ + aY = X(t), a > 0 

(II) d2Y + 2h ~ + ~2y = X(t) 

where a, h, and % are positive constants. The last equation is widely used 
in the analysis of various physical phenomena and constitutes a basic 
model in vibration theory; usually h characterizes the damping in the 
system and % is a natural frequency. The unit response functions are, 
respectively, 

p(t,r) = exp[ - a(t - r ) ]  (2.3) 

p(t,r) = 1 sin~h( t _ r) exp[ -- h(t - r ) ]  (2.4) 
% 

where we have assumed that ~0h 2 = w0 2 - h 2 is positive. 
Leaving out the conditions B concerning the excitation process, one 

easily sees that in the case of system (I) 

t 2 e-2at) P( t )=s  p (t,'r)d'r= ~a (1 -  

and condition A.1 is not satisfied. Similarly, in case (II) 

P(t) =s  p ( t , r ) d r =  4oo2 h 8w0z e 2hi 4h sinZwh t + 2% sin 2% t + --if-- 

and it is seen that condition A.1 is also not satisfied here. Therefore, the 
vibration analysis of damped linear systems subjected to non-Gaussian 
excitation cannot use Rosenblatt's result. For finite values of system 
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parameters a, h, ~0 the band of the systems considered is not infinitely 
narrow and the response departs from normality significantly. In the next 
section we shall show how, in the realistic cases to be considered, departure 
from normality is affected by the correlation parameter of the excitation 
and the bandwidth of the system. 

3. REAL LINEAR SYSTEMS AND NORMALITY 

In order to obtain quantitative results a tractable, specific form of 
non-Gaussian excitation is taken into consideration, namely, 

X ( t )  = Z2(t) (3.1) 

where Z ( t )  is a stationary and Gaussian process such that its average is 
equal to zero and the correlation function is Kz0" ) - 2 -,~trt oze , a > O. In this 
c a s e  

m x = E [ X ( t ) ]  = o~, K x ( t  ) = a2e -Blrl, o2 = 2a~, f l = 2 o ~  

(3.2) 
The one-dimensional probability density function of X ( t )  is 

I 1 ' e x ~ ( - - ~ t  x > 0  
f x ( X )  = Oz(2~r) '/2 x 1/2 20 ' (3.3) 

{0, x < 0  

It is easily seen that departure from normality of the excitation process X ( t )  
is rather significant regardless of the measure of departure. Here, departure 
from normality is characterized by the asymmetry and excess coefficients 
defined by the formulas 

")tl = /s176 '/2 = / s 1 7 6  --  3 (3.4) 

where o is a standard deviation of the process considered and/s163 are the 
third- and fourth-order central moments, respectively. For a Gaussian 
distribution "Y1 = " / 2  ---~ 0. Values of '/l and '/2 different from zero character- 
ize the departure of a one-dimensional distribution from normality. It is 
worth noting that the coefficients (3.4) are, in the case of the distribution 
(3.3), equal to '/1 = 3.9, 72 = 15. 

3.1. First-Order Dynamical Systems 

Let us consider first the system (I), where the excitation process is 
given by (3.1), (3.2). Equation (I) is equivalent to the following system of 
equations: 

d Y / d t  = - a Y  + Z 2 ( t )  

d Z / d t  = - a Z ( t )  + o z (23) ' /2~(0 (3.5) 
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where ~(t) is Gaussian white noise with E[~(t)] = 0, K~(~-)= 3(~'). The 
vector process [ Y ( t ) , Z ( t ) ]  constitutes a diffusion Markov process. The 
Fokker-Planck-Kolmogorov equation for the probability density function 
f ( y , z ;  t) has the following form: 

_ a r(z2ay)fl_o Z(zf)_o  ,ZL a  (3.6) 
0t ~y 0z 2 

Looking for the stationary solution of the above equation and making use 
of the definition of moments 

m k = y ) d y =  f ( y , z ) d z d y ,  k- -  1,2,3,4 

one obtains a recursive set of equations for the moments m k. After 
appropriate transformations we get 

04 3a + 2a 202z 
1 02  , O y  = 

ml  = a z ,  m2 = a 2 a + 2 a  [2a(a  + 2a)]  1/2 

1 [15o 6 + (13a + 4a)ao2m2] 
m3 = a ( a  + a ) ( a  + 400 

1 ( [90a(a + a) + 4(a + 6a)(5a + a)]  
m4 = a ( a  + 2a)(a  + 6cQ(3a + 2a) 

•  3 - 90a2oz4m2 + 315ow ) 

2.J18 

~',.W . . . . . . . . . . . . . .  g t  _ 

Fig. 1 
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Making use of the relations 

tt3 = m3 - 3mlm2 + 2m3, /~4 = m4 - 4mlrn3 + 6rn21rn2 - 3rn4 
and the definition (3.4), one obtains the following result: 

2 [2a(a  + 2a)]  1/2 Y~- a + a  

[ 15a2+25aa+2a2 l 
"[2=3 ( a + a ) ( 3 a + 2 a )  - 1 (3.7) 

It is seen that for a = const, then 71 ~ 0 ,  7 2 ~ 0  as a ~ 0  (the band of the 
filter is infinitely narrow). If a or a /a  is finite, the coefficients "/1 and /̀2 
take significant values; this means that for infinite operating time [the 
values `/l and "/2 correspond to a stationary solution of Eq. (3.6)] the 
response of a system differs significantly from a Gaussian one. Figure 1 
shows the dependence of /̀1 and /̀2 on the ratio a/a.  

3.2. Second-Order Systems 

Let us consider now the vibratory linear system (II) with the process 
(3.1) as an excitation. In order to obtain the asymmetry and excess 
coefficients we shall calculate the following integrals: 

ml(t) = f o tp (  t, t l )E [ X (tl) ] dt I (3.8) 

m2(t)  = fotfootp(t, t l )p ( t ,  t 2 ) E [ X ( t l ) X ( t 2 ) ] d t l d t  2 (3.9) 

~t/~t Ft 
m3(,) =J0 J0 J0 p(t,,,)p(,,,2)p(,,,,) 

• E[X(t,)X(t2)X(t3) ] dt, dt2dt 3 (3.10) 

t~t PI t't I~t 
=4(,) =% Jo Jo Jo P(t'' l)~(t't2)~(t't3)e("'4) 

x e[ x(t,)x(t2)x(t3)x(t4)] 

X dt I dt2dt 3 dt 4 (3.11) 

where p(t, t 0 is given by (2.4). The third and fourth moments occurring in 
(3.10) and (3.11) by virtue.of the normality of Z(t) can be expressed in 
terms of a given correlation function (3.2). Looking for the stationary 
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response of system (II), one obtains 

m l = o~C,, m2= a4(C? + 2C2) 

m3= o6 ( C• + 6C, C 2 + 8C3) 

m 4 = o 8 ( C  4 + 12C2C12 + 12C 2 + 32C1C 3 + 48C4) 

and 

where 

f: C, = p(7") dT. 

"~l (Y)  = 2 3//2 C3/C 3/2, ] / 2 ( Y )  = 12C4/C2 2 

fo=fo ~ C2 = p(7. , )p(7.z)exp(-2alT. ,  - 7.21) d7.,&2 

C 3 = /9 7" 1 7" 2 7.3 

X exp(- 0:17.,- 7.al- 0,17.~- 7",I- 0,17"~- 7"~1)d,~, dT.2dT. 3 

(3.12) 

(3.13) 

(3.14) 

C4 = fo ~ fo o~ fo ~176 fo ~176 (7.1)/~ (7.2)/2 ("/3)/D (7.4) 

X exp(- 0~[7.,- 7.31- 0~[~-,- *41- 0~17.~- ~~1- 0,17.~- 7.41)a7., 47.~d7.~ d7.4 

The constant quantities Cl, C2, C3, C 4 depend on the system parameters h, 
~oh, and the correlation parameter a. The integrals (3.14) have been evalu- 
ated analytically. (z0) The corresponding expressions are rather involved and 
they will not be presented here. The expressions for C1, C 2, C3, C 4 show, 
however, that these constants depend only on two parameters: 

H = h / , ~ ,  ~ = ,~h/~ (3.1s) 

In order to obtain quantitative results for yl(Y) and y2(Y) numerical 
calculations have been performed and the results are presented graphically 
in Figs. 2-5. 

Figures 2a and 2b show the dependence of TI(Y) and y2(Y) on the 
parameter H when ~ is constant; it is seen that y, and ~'2 tend to zero as 
H ~ 0. Figures 3a-3d and 4a-4b illustrate the effect of damping coefficient 
h on 7, and 72; when h-->0 the response tends to the Gaussian one (in this 
case the assumptions of Rosenblatt's theorem are satisfied). Figure 5 shows 
the influence of the correlation parameter a on y, and Y2. 

It should be noticed that in both cases [systems (I) and (II)] linear 
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(b) r ~ . . . . . . . .  
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filters "improve normality" in the sense that 71(Y) < yl(X), ~t2(Y) < 72(X) 
for all values of the system parameters. Nevertheless, the results obtained 
show that even for infinite operating time the response differs significantly 
from the Gaussian one when the bandwidth of the systems considered is 
finite, that is, when one deals with real, dynamical systems. The results 
shown in Fig. 5 refer to the realistic case when the system parameters h and 
o~ o take values obtained from experimental investigations of the suspension 
of road vehicles (cf. Ref. 13). This figure shows that for ~ = 0.2-0.4 (which 
are realistic for the correlation parameter of road roughness) ~/I(Y) ~ 2.5, 
72(Y) ~ 11. This observation suggests that in this situation it would be 
rather unreasonable to approximate the response of the system by the 
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Fig. 3 
h "~ 

Gaussian one. The curves presented in Figs. 2-5 can serve as pattern curves 
in the engineering analysis of vibratory systems subjected to random 
excitation. 

3.3. Systems Subjected to Random Impulses 

Let us consider briefly the response Y(t) of a linear system with unit 
response funct ionp(t ,  ~') to excitation in the form of a sequence of impulses 
occurring at random instants t; of a Poisson process with intensity r(t). This 
response is of the form (1.3). 

If the characteristic function of the process Y(t) is denoted by ~,(?Q, 
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Z.a28 

~' (c) 

o~= O.h* 
H) ~ t 4.6 
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[ a �9 - - J [ | l I i | 

Fig. 3. C o n t i n u e d .  

then (cf. Ref. 6) 

In ff)t()~ ) = ;_+:K(~')[eiP "'~)x - 1] d~- (3.16) 

By use of the above formula one can easily obtain the first four moments  of 
Y(t) and consequently the coefficients ~,] and ~'2; they are 

[I32(t)) '/2 I~(t)14(t) (3.17) 
"r = / 2 ~  ' 7 2 ( Y ) -  

where In(t ) is given by (1.5). 
If K(t) = x = const, and in the case of stationary response of systems 
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Fig .  4 

(I) and (II), one obtains for system (I) 

23/2(a)'/2 
v l = - - g - -  -~ , 

and for system (II) 

a 
Y2 = - 

4h3c~ 11/2 
YI 

6h~% 2 

(3.18) 

(3.19) 

(3.20) 
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Fig. 5 

When a/x~O or h ~ 0 ,  "fl and ~2--')0 and the response Y(t) (its one- 
dimensional distribution) can be considered as Gaussian. It is worth noting 
that for the values of h and r o taken from the experimental examination of 
a road vehicle suspension, (~3) that is, for h = 2~r • 1.58 • 0.35 = 3.47 and 
o~ o = 2~r • 1.58 = 9.93, we have 71 ~ 1.76~-1/2 ~'2 ~ 8.45~-1 

ACKNOWLEDGMENT 

One of us (KS) wishes to express his thanks to Professor J. B. Robson 
from the University of Glasgow for interesting discussions concerning the 
use of Gaussian analysis in non-Gaussian problems. 

REFERENCES 

1. W. Hoeffing and H. Robbins, Duke Math. J. 1S:773-780 (1948). 
2. M. Rosenblatt, Proc. Nat. Acad. Sci. USA 42:43-47 (1956). 
3. J .A.  Rozanov, Probability Theory Appl. 5:243-246 (1960). 
4. M. Rosenblatt Quart. Appl. Math. 18:387-393 (1961). 
5. W.M. Wolkov, Electron. 1S(12) (1970). 
6. A. Papoulis, Y. Appl. Probab. 8:118-127 (1971). 
7. A. Papoulis, IEEE Trans. Inform. Theory IT-18(1):20-23 (1972). 
8. C.L. Mallows, J. Appl. Prob., 4:313-329 (1967). 
9. K. Sobczyk, The Use of Gaussian Analysis in Non-Gaussian Problems, Department of 

Mechanical Engineering, Glasgow University (1976). 



Linear Systems and Normality 373 

10. Z. Kotulski, Gaussianity in Stochastic Differential Equations (in Polish), M. Sci. thesis, 
Warsaw Technical University (1979). 

11. J .L.  Lumley, in Statistical Models and Turbulence, Lecture Notes in Physics (Springer, 
New York, 1972). 

12. N .N.  Kolmogorov and J. A. Rozanov, Probability Theory Appl. 5:222-227 (1960). 
13. K. Sobczyk and D. B. Macvean in Stochastic Problems in Dynamics (Pitman, New York, 

1977). 


